[vc_row row_type=”3″ blox_image=”21341″ align_center=”aligncenter” page_title=”page-title-x” blox_dark=”true” parallax_speed=”8″][vc_column]
[vc_column_text]
Identifying important entities in news articles
[/vc_column_text]
[/vc_column][/vc_row][vc_row][vc_column width=”1/4″]
AboutThe Client
[/vc_column][vc_column width=”1/2″]
[vc_column_text]One of the leading providers of news and intelligence specifically for the global stock markets.[/vc_column_text]
[/vc_column][vc_column width=”1/4″][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image image=”21342″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”21343″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”21344″ img_size=”550×350″][/vc_column][/vc_row][vc_row][vc_column]
[vc_column_text]
About this project
[/vc_column_text][vc_row_inner][vc_column_inner width=”1/2″][vc_column_text]Project description
The task was to aggregate lots of financial news articles and they wanted to automatically identify words and phrases that are important for the readers like countries, cities, states, monetary values, units, companies, institutions, etc.
We have used several state of the art Natural Language Processing techniques to perform the Named Entity Recognition task on news articles and present it in a usable way.
[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/2″][vc_column_text]Technologies:
- spaCy, scikit-learn
[/vc_column_text][/vc_column_inner][/vc_row_inner]
[/vc_column][/vc_row]