[vc_row row_type=”3″ blox_image=”21388″ align_center=”aligncenter” page_title=”page-title-x” blox_dark=”true” parallax_speed=”8″][vc_column]
[vc_column_text]
Predicting the popularity of social media posts
[/vc_column_text]
[/vc_column][/vc_row][vc_row][vc_column width=”1/4″]
AboutThe Client
[/vc_column][vc_column width=”1/2″]
[vc_column_text]US-based startup building a social networking site.[/vc_column_text]
[/vc_column][vc_column width=”1/4″][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image image=”21391″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”21389″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”21390″ img_size=”550×350″][/vc_column][/vc_row][vc_row][vc_column]
[vc_column_text]
About this project
[/vc_column_text][vc_row_inner][vc_column_inner width=”1/2″][vc_column_text]Project description
In order to predict how popular a post created on the client’s platform would become, we’ve created a Machine Learning model for sentiment classification model and represented user activities to predict how many likes would the published content receives.
[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/2″][vc_column_text]Technologies:
- spaCy, PyTorch, scikit-learn
[/vc_column_text][/vc_column_inner][/vc_row_inner]
[/vc_column][/vc_row]