[vc_row row_type=”3″ blox_image=”21436″ align_center=”aligncenter” page_title=”page-title-x” blox_dark=”true” parallax_speed=”8″][vc_column]
[vc_column_text]
Enhancing photo/video quality using Deep Learning
[/vc_column_text]
[/vc_column][/vc_row][vc_row][vc_column width=”1/4″]
AboutThe Client
[/vc_column][vc_column width=”1/2″]
[vc_column_text]US-based startup building a social networking site. [/vc_column_text]
[/vc_column][vc_column width=”1/4″][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image image=”21437″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”21434″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”21433″ img_size=”550×350″][/vc_column][/vc_row][vc_row][vc_column]
[vc_column_text]
About this project
[/vc_column_text][vc_row_inner][vc_column_inner width=”1/2″][vc_column_text]Project description
The goal of the project was to increase photo/video quality and scale it up to 4x without losing its quality. Solution: Deep CNN and GAN based image super-resolution trained on provided domain data. Performance: near-real-time and 60fps, so it can be applied to a live stream.
[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/2″][vc_column_text]Technologies:
- PyTorch based CNN model for image super-resolution.
- LibTorch and PyTorch JIT for near-real-time performance.
[/vc_column_text][/vc_column_inner][/vc_row_inner]
[/vc_column][/vc_row]