[vc_row row_type=”3″ blox_image=”21034″ align_center=”aligncenter” page_title=”page-title-x” blox_dark=”true” parallax_speed=”8″][vc_column]
[vc_column_text]
AI for HR analytics
[/vc_column_text]
[/vc_column][/vc_row][vc_row][vc_column width=”1/4″]
AboutThe Client
[/vc_column][vc_column width=”1/2″]
[vc_column_text]Project goal was customer textual data analysis for the large international corporation based in the US.[/vc_column_text]
[/vc_column][vc_column width=”1/4″][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image image=”21720″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”20698″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”16174″ img_size=”550×350″][/vc_column][/vc_row][vc_row][vc_column]
[vc_column_text]
About this project
[/vc_column_text][vc_row_inner][vc_column_inner width=”1/2″][vc_column_text]
Project description:
The client has on premises storage infrastructure, where the files with the genetic analysis data are placed.
We have designed and implemented the AWS technology stack based, BigData pipeline, which transfers raw data from on premises storage to the AWS S3 storage and later to the database deployed on AWS infrastructure. Pipeline includes CHECKSUM validation of each file and it’s insertion into the database through the EKS jobs. Pipeline also contains retries mechanism and notification using the AWS SES (Simple Email Service).
[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/2″][vc_column_text]
Technologies:
- Python, AWS Stack: S3, Lambda, EKS, ECR, Cloudwatch, SES.
[/vc_column_text][/vc_column_inner][/vc_row_inner]
[/vc_column][/vc_row]