[vc_row row_type=”3″ blox_image=”21662″ align_center=”aligncenter” page_title=”page-title-x” blox_dark=”true” parallax_speed=”8″][vc_column]
[vc_column_text]
Recommender system for
restaurant menu app
[/vc_column_text]
[/vc_column][/vc_row][vc_row][vc_column width=”1/4″]
AboutThe Client
[/vc_column][vc_column width=”1/2″]
[vc_column_text]The project was implemented for a startup based in the US, who was building a mobile app for personalized restaurant menu recommendations.[/vc_column_text]
[/vc_column][vc_column width=”1/4″][/vc_column][/vc_row][vc_row][vc_column width=”1/3″][vc_single_image image=”20927″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”20924″ img_size=”550×350″][/vc_column][vc_column width=”1/3″][vc_single_image image=”21665″ img_size=”550×350″][/vc_column][/vc_row][vc_row][vc_column]
[vc_column_text]
About this project
[/vc_column_text][vc_row_inner][vc_column_inner width=”1/2″][vc_column_text]
Project Description:
As part of the project, we’ve scraped data about meals and menus from the internet. More than 7 million menu items from around 40,000 restaurants in the USA.
Feature extraction techniques were implemented in order to transform semi-structured data into a more useful representation. A personalized content-based menu recommendation system was created.
We’ve incorporated filtering techniques, specifically to deal with the cold start problem.
[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/2″][vc_column_text]
Technologies:
- spaCy, PyTorch.
- Scrapy framework to collect data from the internet.
[/vc_column_text][/vc_column_inner][/vc_row_inner]
[/vc_column][/vc_row]